IS414: Data Mining

Dr.Waleed M.Ead

waleedead@hotmail.com

IS414: Data Mining

IS414: Data Mining

Chapter 2. Getting to Know Your Data

IS414: Data Mining

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Types of Data Sets: (1) Record Data

Person:

Pers_ID

0

2

0

1

0

2

0

2

3

0

3

0

Surname

Miller

Relational records

Relational tables, highly structured

Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

				1		Ortega		1	Alvaro		Valencia		 no relation 	
		2		Huber			Urs		Zurich					
oss	tal	าร			3	Bla	nc	6	aston		Paris	;		
033	la	55			4	Berte	olini	Fa	abrizio		Rom	1		
				Ca	r:									
				Ca	ar_ID	Мо	del		Year		Valu	ıe	Pers_ID	
				1	101	Ben	tley		1973		1000	00	0	
				1	102	Rolls	Royce		1965		3300	00	0	
				1	103	Peug	geot		1993		500	D	3	
				1	104	Feri	rari		2005		1500	00	4	
				1	105	Ren	ault		1998		200	0	3	
					106	Ren	ault		2001		700	0	3	
				1	107	Sm	art		1999		200	0	2	
	team	coach	У	pla	ball	score	game	n Wi	lost	timeout	season			
nt 1	3	0	5	5	0	2	6	0	2	0	2			

First_Name

Paul

City

London

Document data: Term-frequency vector (matrix) of text documents

Documen

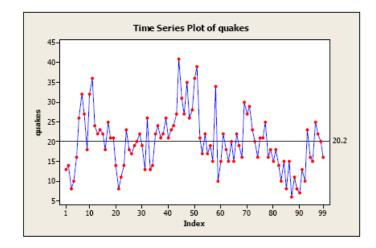
Document 2

Document 3

0

1

0


Types of Data Sets: (2) Graphs and Networks

- Transportation network □ World Wide Web Ô Molecular Structures
- Social or information networks

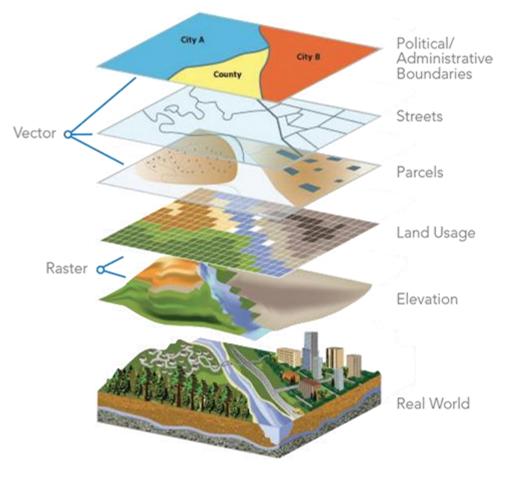
Types of Data Sets: (3) Ordered Data

□ Video data: sequence of images

Temporal data: time-series

Sequential Data: transaction sequences

Genetic sequence data


Service 20	R.4	
		The second states and the second states at a second state
Aller A	here 1	
	Y Walk and	
ne A		
2 3 6		
	14.10	
he hit		(c) jamekimis 1996 original photopainting
	Human	Start GTTTTGAGGATGTTCAACAAATGCTCCTTTCATTCCTCTATTTACAGACCTGCCGCA
	Chimpanzee	GTTTTGAGGATGTTCAATAAATGCTGCTTTCATTCCTCTATTTACAGACCTGCCGCA
	Macaque	GTTTTGAGGATGCTCAATAAATGCTCCTTTCATTCCTCCATTTACAAACTTGCCGCA
	Human	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
	Chimpanzee	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
	Macaque	GACAATTCTGCTAGCAGCCTTTGTGCTATTATCTGTTTTCTAAACTTAGTAATTGAGTGT
	Human	GATCTGGAGACTAA CTCIGAAATAAATAAGCTGATTATTTATTTATTTCTCAAAACAA
	Chimpanzee	GATCTGGAGACTAAACTCTGAAATAAATAAGCTGATTATTTAT
	Macaque	TATCTGGAGACTAAACTCTGAAATAAATAAGCTGATTATTTAT
ences	Human	CAGAATACGATTTAGCAAATTACTTCTTAAGATATTATTTTACATTTCTATATTCTCCTA
CIICCS	Chimpanzee	CAGAATACGATTTAGCAAATTACTTCTTAAGATACTATTTTACATTTCTATATTCTCCTA
	Macaque	CAGAATATGATTTAGCAAATTAC <mark>C</mark> TCTTAAGATATTATTTT <mark>G</mark> CACTTCTATATTCTCCTA
	Human	CCCTGAGTTGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTATACA
	Chimpanzee	CCCTGAGTTGATGTGTGAGCCGTATGTCACTTTCATAAAGCCAGGTATACATTATG
	Macaque	CCCTGAGTTGATGTGTGAGCAATATGTCACTTCCACAAAGCCAGGTATATATA
	50.3528978678	H I I Y S T F L S K
	Human	GACAGGTAAGTAAAAAACATATTATTTATTCTACGTTTTTGTCCAAAAATTTTAAATTTC
	Chimpanzee	GACAGGTAAGTAAAAAAACATATTATTATTCTACGTTTTTGTCCAAGAATTTTAAATTTC
	Macaque	GACAGGTAAGTAAAAA.CATATTATTTATTCTAGGTTTTTGTCCAAGAGTTTTAAATTTC
	Human	AACTGTTGCGCGTGTGTTGGTAAATGTAAAACAAACTCAGTACA
	Chimpanzee	AAC TGTTGCGCGTGTGTTGGTAATGTAAAACAAACTCAGTACA
	Macaque	AACTGTTGTGCATGTGGTAG+CGTAAAACAAATTCAGTACG
	1	

Types of Data Sets: (4) Spatial, image and multimedia Data

□ Image data:

Video data:

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- □ A data object represents an entity
- **Examples**:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*
- Data objects are described by attributes
- □ Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

Attribute (or dimensions, features, variables)

- □ A data field, representing a characteristic or feature of a data object.
- □ E.g., customer_ID, name, address

Types:

- Nominal (e.g., red, blue)
- Binary (e.g., {true, false})
- Ordinal (e.g., {freshman, sophomore, junior, senior})
- Numeric: quantitative
 - □ Interval-scaled: 100°C is interval scales
 - Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K
- **Q1:** Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

□ Nominal: categories, states, or "names of things"

- Hair_color = {auburn, black, blond, brown, grey, red, white}
- marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- □ <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

11

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

Quantity (integer or real-valued)

Interval

- Measured on a scale of equal-sized units
- Values have order
 - □ E.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - **E.g.**, zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary